首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   339篇
  免费   22篇
  2023年   1篇
  2022年   1篇
  2021年   8篇
  2020年   5篇
  2019年   4篇
  2018年   11篇
  2017年   5篇
  2016年   12篇
  2015年   18篇
  2014年   18篇
  2013年   17篇
  2012年   31篇
  2011年   30篇
  2010年   25篇
  2009年   16篇
  2008年   17篇
  2007年   18篇
  2006年   13篇
  2005年   17篇
  2004年   19篇
  2003年   14篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   6篇
  1994年   4篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1971年   1篇
  1970年   2篇
  1958年   2篇
  1957年   3篇
  1954年   2篇
排序方式: 共有361条查询结果,搜索用时 31 毫秒
71.
Synopsis The coexistence of a fully developed falciform process and vitreal vessels, a hitherto unknown situation in teleostean intraocular vascularisation, has been noted in the loach Noemacheilus rupicola rupicola. Possible implications of this vascular development for the species have been highlighted.  相似文献   
72.
The three isoforms of the inositol 1,4,5-trisphosphate receptor (IP3R) exhibit distinct IP3 sensitivities and cooperativities in calcium (Ca2+) channel function. The determinants underlying this isoform-specific channel gating mechanism have been localized to the N-terminal suppressor region of IP3R. We determined the 1.9 Å crystal structure of the suppressor domain from type 3 IP3R (IP3R3SUP, amino acids 1–224) and revealed structural features contributing to isoform-specific functionality of IP3R by comparing it with our previously determined structure of the type 1 suppressor domain (IP3R1SUP). The molecular surface known to associate with the ligand binding domain (amino acids 224–604) showed marked differences between IP3R3SUP and IP3R1SUP. Our NMR and biochemical studies showed that three spatially clustered residues (Glu-20, Tyr-167, and Ser-217 in IP3R1 and Glu-19, Trp-168, and Ser-218 in IP3R3) within the N-terminal suppressor domains of IP3R1SUP and IP3R3SUP interact directly with their respective C-terminal fragments. Together with the accompanying paper (Yamazaki, H., Chan, J., Ikura, M., Michikawa, T., and Mikoshiba, K. (2010) J. Biol. Chem. 285, 36081–36091), we demonstrate that the single aromatic residue in this region (Tyr-167 in IP3R1 and Trp-168 in IP3R3) plays a critical role in the coupling between ligand binding and channel gating.  相似文献   
73.
Lymphotoxin‐beta receptor (LTβR) present on stromal cells engages the noncanonical NF‐κB pathway to mediate RelB‐dependent expressions of homeostatic chemokines, which direct steady‐state ingress of naïve lymphocytes to secondary lymphoid organs (SLOs). In this pathway, NIK promotes partial proteolysis of p100 into p52 that induces nuclear translocation of the RelB NF‐κB heterodimers. Microbial infections often deplete homeostatic chemokines; it is thought that infection‐inflicted destruction of stromal cells results in the downregulation of these chemokines. Whether inflammation per se also regulates these processes remains unclear. We show that TNF accumulated upon non‐infectious immunization of mice similarly downregulates the expressions of these chemokines and consequently diminishes the ingress of naïve lymphocytes in inflamed SLOs. Mechanistically, TNF inactivated NIK in LTβR‐stimulated cells and induced the synthesis of Nfkb2 mRNA encoding p100; these together potently accumulated unprocessed p100, which attenuated the RelB activity as inhibitory IκBδ. Finally, a lack of p100 alleviated these TNF‐mediated inhibitions in inflamed SLOs of immunized Nfkb2?/? mice. In sum, we reveal that an inhibitory TNF‐p100 pathway modulates the adaptive compartment during immune responses.  相似文献   
74.
The eukaryotic genome is a highly dynamic nucleoprotein complex that is comprised of DNA, histones, nonhistone proteins and RNA, and is termed as chromatin. The dynamicity of the chromatin is responsible for the regulation of all the DNA-templated phenomena in the cell. Several factors, including the nonhistone chromatin components, ATP-dependent remodeling factors and the chromatin-modifying enzymes, mediate the combinatorial post-translational modifications that control the chromatin fluidity and, thereby, the cellular functions. Among these modifications, reversible acetylation plays a central role in the highly orchestrated network. The enzymes responsible for the reversible acetylation, the histone acetyltransferases (HATs) and histone deacetylases (HDACs), not only act on histone substrates but also on nonhistone proteins. Dysfunction of the HATs/HDACs is associated with various diseases like cancer, diabetes, asthma, cardiac hypertrophy, retroviral pathogenesis and neurodegenerative disorders. Therefore, modulation of these enzymes is being considered as an important therapeutic strategy. Although substantial progress has been made in the area of HDAC inhibitors, we have focused this review on the HATs and their small-molecule modulators in the context of disease and therapeutics. Recent discoveries from different groups have established the involvement of HAT function in various diseases. Furthermore, several new classes of HAT modulators have been identified and their biological activities have also been reported. The scaffold of these small molecules can be used for the design and synthesis of better and efficient modulators with superior therapeutic efficacy.  相似文献   
75.
76.
DNA is continuously exposed to damaging agents that can lead to changes in the genetic information with adverse consequences. Nonetheless, eukaryotic cells have mechanisms such as the DNA damage response (DDR) to prevent genomic instability. The DNA of eukaryotic cells is packaged into nucleosomes, which fold the genome into highly condensed chromatin, but relatively little is known about the role of chromatin accessibility in DNA repair. p19INK4d, a cyclin-dependent kinase inhibitor, plays an important role in cell cycle regulation and cellular DDR. Extensive data indicate that p19INK4d is a critical factor in the maintenance of genomic integrity and cell survival. p19INK4d is upregulated by various genotoxics, improving the repair efficiency for a variety of DNA lesions. The evidence of p19INK4d translocation into the nucleus and its low sequence specificity in its interaction with DNA prompted us to hypothesize that p19INK4d plays a role at an early stage of cellular DDR. In the present study, we demonstrate that upon oxidative DNA damage, p19INK4d strongly binds to and relaxes chromatin. Furthermore, in vitro accessibility assays show that DNA is more accessible to a restriction enzyme when a chromatinized plasmid is incubated in the presence of a protein extract with high levels of p19INK4d. Nuclear protein extracts from cells overexpressing p19INK4d are better able to repair a chromatinized and damaged plasmid. These observations support the notion that p19INK4d would act as a chromatin accessibility factor that allows the access of the repair machinery to the DNA damage site.  相似文献   
77.
DNA strand-breaks (SBs) with non-ligatable ends are generated by ionizing radiation, oxidative stress, various chemotherapeutic agents, and also as base excision repair (BER) intermediates. Several neurological diseases have already been identified as being due to a deficiency in DNA end-processing activities. Two common dirty ends, 3’-P and 5’-OH, are processed by mammalian polynucleotide kinase 3’-phosphatase (PNKP), a bifunctional enzyme with 3’-phosphatase and 5’-kinase activities. We have made the unexpected observation that PNKP stably associates with Ataxin-3 (ATXN3), a polyglutamine repeat-containing protein mutated in spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease (MJD). This disease is one of the most common dominantly inherited ataxias worldwide; the defect in SCA3 is due to CAG repeat expansion (from the normal 14–41 to 55–82 repeats) in the ATXN3 coding region. However, how the expanded form gains its toxic function is still not clearly understood. Here we report that purified wild-type (WT) ATXN3 stimulates, and by contrast the mutant form specifically inhibits, PNKP’s 3’ phosphatase activity in vitro. ATXN3-deficient cells also show decreased PNKP activity. Furthermore, transgenic mice conditionally expressing the pathological form of human ATXN3 also showed decreased 3’-phosphatase activity of PNKP, mostly in the deep cerebellar nuclei, one of the most affected regions in MJD patients’ brain. Finally, long amplicon quantitative PCR analysis of human MJD patients’ brain samples showed a significant accumulation of DNA strand breaks. Our results thus indicate that the accumulation of DNA strand breaks due to functional deficiency of PNKP is etiologically linked to the pathogenesis of SCA3/MJD.  相似文献   
78.
79.
80.
Abstract In the duplex retina of the catfish Clarias batrachus(Linnaeus, 1758), the apical processes of the pigment epithelial cells have been found by transmission electron microscopy to be in intimate contact with the calycal processes around the basal portion of the photoreceptor outer segments. It is hypothesized that the retinal pigment epithelium effectively transports synthesized products and metabolites to the photoreceptor inner segments via the anatomical zone of the apical–calycal processes interface in this species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号